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1. Introduction 

The pitch-damping moment coefficients qmC  (due to body transverse angular rate) and αmC  

(due to angular rate associated with angle of attack) play an important role in the performance 
and dynamic stability of flight bodies.  The pitch-damping moment coefficient sum mqC +  αmC  

is of most practical importance, although the individual damping coefficients are often required 
in aerodynamic analyses.  Throughout the past several decades, a variety of techniques and 
theories have been developed for predicting the pitch-damping coefficients (1–10).  These 
techniques vary in their ease of use as well as their ability to accurately predict the pitch-
damping coefficients. 

During the course of its development, slender body theory was generalized to predict a large 
variety of aerodynamic coefficients including the pitch-damping coefficients (1–2).  In general, 
direct application of these methods provides only qualitative results for the aerodynamic 
coefficients.  However, elements of slender body theory have been incorporated into current 
engineering methods.  These methods (3–5) have evolved considerably, although their 
implementation is fairly complex.  Apart from implementation issues, modern engineering 
methods, once embodied into a computer code, are relatively easy to use and provide fast and 
reasonably accurate aerodynamic predictions for a large variety of flight geometries. 

From slender body theory, some important relationships between the various aerodynamic 
coefficients can be derived, although these relationships only hold rigorously within the context 
of theories from which they were obtained.  Bryson (2) derived the relatively well-known slender 
body result that relates the pitch-damping moment coefficient sum to the normal force 
coefficient, shown in equation 1: 

 αα N

2
cg

mqm C
D
xL

CC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=+ . (1) 

Sacks (1), using the Blasius method for calculating the forces and moments on slender bodies 
from the cross-flow potential, found that many of the aerodynamic coefficients were related to 
each other.  Sacks obtained expressions that directly related the individual pitch-damping 
coefficients to the normal force coefficient, such as the pitch-damping force coefficient shown in 
equation 2.  These expressions have a form similar to Bryson’s result shown in equation 1: 

 αN
cg

qN C
D
xL

C ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= . (2) 

In practice, these relations that directly relate the damping coefficients to the normal force 
coefficient do not perform particularly well, even when the slender body evaluation of the 
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normal force coefficient is replaced with a more accurate evaluation of the normal force 
coefficient from sources such as experimental measurement or computational fluid dynamics 
(CFD) (6).  However, these relations can be combined with empirical corrections to yield more 
reliable results (6, 7). 

Sacks also found expressions that related the individual damping coefficients to each other, 
including the following relationship between the pitch-damping force coefficients: 

 αα mNqN CCC −= . (3) 

Sacks’ explicitly derived relation shown in equation 3 can be easily generalized using his theory 
to the individual pitch-damping force and moment coefficients, and the pitch-damping force and 
moment sums as shown in equations 4–9.  For the purposes of this report, these relationships will 
be referred to as Sacks’ relations: 

 αα mNqN CCC −= , (4) 

 αα m2mqm CCC −= , (5) 

 [ ] ααα mNNqN CC2CC −=+ , (6) 

 [ ] ααα m2mmqm CC2CC −=+ , (7) 

 [ ] αα mqNNqN CC2CC +=+ , (8) 

and 

 [ ] αα m2qmmqm CC2CC +=+ . (9) 

Sacks’ contribution is the recognition that these relationships exist, although the same relations 
are implicitly contained in other theories such as that presented by Bryson (2).  

For slender bodies, these relations are independent of configuration and are applicable to both 
winged and wingless bodies.  The importance of these relationships is that if just one of the three 

pitch-damping force (or moment) coefficients can be determined ( N Nq
C ,C

α
 or N Nq

C C
α

⎡ ⎤+⎢ ⎥⎣ ⎦
), 

the other two damping coefficients can be obtained using simple closed-form expressions.  This, 
of course, assumes that the pitching moment coefficient αmC  (first moment of the normal force) 

and the second moment of normal force αm2C  can be obtained as well.  Both of these 
coefficients can be obtained if the normal force distribution is known as shown in equations 10 
and 11: 
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 ∫
−

=
x

0

Ncg
m xd

xd
Cd

D
)xx(

C α
α , (10) 

and 

 ∫
−

=
x

0

N
2

2
cg

m2 xd
xd

Cd

D

)xx(
C α

α . (11) 

Predictive methods for the static normal force and static pitching moment are well established, 
even for fast-design methods.   

Because Sacks’ relations were derived using simple approximate theories, it remains to be shown 
whether the validity of the relations shown in equations 4–9 exists only within the context of the 
theories from which they were derived or whether they are universally valid for slender bodies, 
or perhaps, more importantly, whether they are of general engineering significance.  It is 
important to note that the relations shown in equations 4–9 differ somewhat from the results in 
equations 1 and 2 because they relate the pitch-damping coefficients to each other rather than 
purely to the static normal force coefficient.  This suggests that Sacks’ relations may more 
properly represent the physics compared to their counterparts which directly relate the damping 
coefficients to the normal force coefficient.  Because of this, there is reason to investigate the 
validity and accuracy of Sacks’ relations. 

Recently, a computational approach for predicting all three of the pitch-damping coefficients has 
been developed (8, 9).  The approach solves the three-dimensional (3-D) thin-layer Navier-
Stokes equations for three different imposed motions that allow the three pitch-damping 
coefficients to be predicted independently.  The pitch-damping force and moment coefficient 
sums are determined from the computation of a body undergoing an imposed coning motion.  
The individual pitch-damping coefficients are obtained from computations of a body undergoing 
two specific types of imposed helical motions.  Each of these motions is described in the 
following sections.  One of the key components of this method is that steady flow techniques can 
be employed to predict aerodynamic derivatives normally associated with time-dependent 
motions. 

1.1 Helical Motions 

Forces and moments related to the two individual rates q  and α  can be excited independently 
using two types of motion where the center of gravity (CG) of the flight vehicle traverses a 
helical flight path.  The first motion requires the vehicle’s longitudinal axis to be oriented in the 
same direction as the center of rotation of the helix but displaced by a constant distance.   
Figure 1 shows a 3-D view of the motion. 

This particular motion produces no rotation of the body-fixed nonrolling coordinate frame 
relative to an earth-fixed coordinate frame, and hence, the transverse angular velocity of the body 
is zero.  The angle of attack and its angular rate vary continuously, producing moment 
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Figure 1.  Helical motion with nonzero α  and zero q . 

components associated with the coefficients αmC  and αmC , respectively.  This motion is 
referred to as “q = 0 helical motion” because the angular rates associated with the damping 
coefficient qmC  are zero. 

For the second motion, the longitudinal axis of the flight vehicle remains tangent to the helical 
flight path at each point along the trajectory.  Figure 2 shows a 3-D view of this motion.  The 
angle of attack of the incident airstream is zero because both the longitudinal axis of the body 
and the free-stream velocity vector are tangent to the flight path.  The resulting yawing rate is 
also zero because the angle of attack is constant.  The angular orientation of the flight body 
changes continuously with respect to an earth-fixed reference frame, producing a nonzero 
transverse angular rate. 

As a result, moment components associated with the damping moment qmC  are produced.  This 
motion is referred to as “ 0=α  helical motion” because the angular rates associated with the 
damping coefficient αmC  are zero. 

For each of the helical motions, the transverse aerodynamic moment in the nonrolling frame will 
be periodic in time, which also indicates that the flowfield will be periodic in time when viewed 
from the nonrolling coordinate frame.  The time dependency is removed by transforming to an 
orthogonal right-handed coordinate system that has its x-axis aligned with the longitudinal axis 
of the body and its z-axis along a line between the body’s CG and the axis of rotation of the 
helix. 
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Figure 2.  Helical motion with zero α  and nonzero q . 

For each of the helical motions previously described, the spin rate of the body has not been 
defined.  To eliminate any contributions to the aerodynamic forces and moments from the 
Magnus forces and moments, the spin rate is fixed to zero (see references [8] and [9] for details).  
The resulting in-plane moment ( )mC  and side moment ( )nC  coefficients in the transformed 
coordinate system for both type of helical motions are shown in equations 12 and 13: 

Zero spin q 0 helical motion− =  

 
V

R
iC

V
R

V
DCiCC o

m
o

mnm
Ω

+
Ω

⎟
⎠
⎞

⎜
⎝
⎛ Ω−=+ αα , (12) 
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Zero spin 0 helical motion− =α  

 
V

R
V
DCiCC o

qmnm
Ω

⎟
⎠
⎞

⎜
⎝
⎛ Ω=+ . (13) 

Here, Ω  is the angular velocity of the body about the helix axis, oR  is the perpendicular 
distance between the helix axis and the body CG, and V is the total linear velocity of the CG.  
Similar expressions for the individual damping force coefficients can be developed using the 
same approach as applied for the moment coefficients. 

1.2 Coning Motion 

To predict the pitch-damping coefficient sum, coning motion is employed.  In steady coning 
motion, the longitudinal axis of the flight body performs a rotation at a constant angular velocity 
about a line parallel to the free-stream velocity vector and coincident with the body’s CG, while 
oriented at a constant angle with respect to the free-stream velocity vector.  This is shown 
schematically in figure 3.  In the context of this report, coning motion also requires the CG to 
traverse a rectilinear path at constant velocity such that the free-stream velocity vector has a 
fixed orientation with the inertial frame. 

 

Figure 3.  Schematic of coning motion. 

Relative to a nonrolling coordinate frame, both the transverse angular rate of the body and the 
angular rate associated with the angle of attack vary in a periodic manner thereby exciting the 
aerodynamic forces and moments associated with both of the individual pitch-damping 
coefficients.  Here, a specific form of coning motion, described as zero-spin coning motion, is 
employed.  In zero-spin coning motion, the total angular velocity of the body along the 
longitudinal axis (the spin rate) is zero.  By imposing zero spin rate on the body, the 
contributions from the Magnus forces and moments are eliminated. 

The time dependency is removed by transforming the body-fixed nonrolling coordinate frame to 
an orthogonal right-handed coordinate system that has its x-axis aligned with the longitudinal 
axis of the body and its z-axis in the pitch-plane of the body.  Within this transformed coordinate 
frame, in-plane moment ( )mC  and side moment ( )nC  coefficients have the following form:



 7

Zero-spin coning motion 

 [ ] δγδ αα mmqmnm CCC
V
DiiCC ++⎟
⎠
⎞

⎜
⎝
⎛ Ω=+ . (14) 

Here, the side-moment is proportional to the pitch-damping moment coefficient sum and varies 
linearly with the coning rate Ω  and sine of the total angle of attack .δ   For small angles of 
attack, the cosine of the total angle of attack, ,γ  can be assumed to be one. 

The pitch-damping coefficient sum can also be determined by simply adding the individual 
damping coefficients.  In practice, there is very little difference in the two results.  However, for 
the current study, directly predicting the pitch-damping coefficient sum using coning motion 
provides an alternative prediction of the pitch-damping sum and additional confirmation of the 
predictions of the individual coefficients. 

2. Computational Technique 

In the previous section, several types of steady motion were presented that produce aerodynamic 
forces and moments from which the various pitch-damping coefficients can be obtained.  One 
unique feature of these motions is that they are steady.  The advantage of a steady motion over 
an unsteady motion is that a potentially time-independent flowfield can be produced by a steady 
motion, permitting analysis using steady flow CFD techniques.  Such techniques can be 
computationally less expensive than time-dependent CFD approaches.  To fully exploit the 
steady character of the flow, special body-fixed coordinate systems have been employed to 
capture the steady flowfield.  One feature of these coordinate frames is that they are rotating at a 
constant rate with respect to an inertial frame.  Because of this, the governing equations of fluid 
motion must be modified to take into account the centrifugal and Coriolis force terms associated 
with the noninertial rotating frame. 

The steady thin-layer Navier-Stokes equations are shown in equation 15: 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂

=++
∂
∂

+
∂
∂

+
∂
∂

cc ŜŜ
Re
1ĤĤĜF̂Ê

ζζηξ
. (15) 

The inviscid flux vectors, Ê , F̂ , and Ĝ , the viscous term Ŝ , the inviscid and viscous source 
terms due to the cylindrical coordinate formulation, cĤ  and cŜ , and the source term Ĥ,  
containing the Coriolis and centrifugal force terms that result from the rotating coordinate frame, 
are functions of the dependent variables represented by the vector )e,w,v,u,(qT ρρρρ= , where 
ρ  and e  are the density and the total energy per unit volume, and u , v , and w  are the velocity 
components in axial, circumferential, and normal directions.  The inviscid flux vectors and the 
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source term are shown in equation 16.  Details of the thin-layer viscous term are available in the 
literature (11): 

  

( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
=

Upe
wU
vU

puU
U

J
1Ê

x

ρ
ρ

ξρ
ρ

       

( ) ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

=

Vpe
pwV

r/pvV
puV

V

J
1F̂

r

x

ηρ
ηρ
ηρ

ρ

φ  

  (16) 
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The pressure, p, can be related to the dependent variables by applying the ideal gas law: 

 ( ) ( )2 2 2p 1 e u v w
2
ργ ⎡ ⎤= − − + +⎢ ⎥⎣ ⎦

. (17) 

The turbulent viscosity, ,tµ  which appears in the viscous matrices, was computed using the 
Baldwin-Lomax turbulence model (12). 

The Coriolis and centrifugal acceleration terms due to the rotating coordinate system, which are 
contained in the source term, ˆ,H  are shown in equation 18: 

 ( )f 2 u R= Ω × +Ω × Ω× . (18) 

The Coriolis acceleration is a function of the angular velocity of the coordinate frame with 
respect to the inertial frame, ,Ω  and the fluid velocity vector, u,  which can be represented by the 
velocity components, u , v , and w .  The centripetal acceleration is a function of the angular 
velocity of the rotating frame, ,Ω  and the displacement vector, R,  between the axis of rotation 
and the local position in the flowfield.  The acceleration vector, f,  can be written in terms of its 
components along the x , ,φ  and r  axes, fx , φf , and rf . 

The steady thin-layer equations are solved using the parabolized Navier-Stokes (PNS) technique 
of Schiff and Steger (11).  This “space-marching” approach integrates the governing equations 
from the nose of the flight body to the tail.  Following the approach of Schiff and Steger, the 
governing equations, which have been modified here to include the Coriolis and centrifugal force 
terms, are solved using a conservative, approximately factored, implicit finite-difference 
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numerical algorithm as formulated by Beam and Warming (13).  Details of the implementation 
of the source term that contains the Coriolis and centrifugal force terms are given in references  
(8) and (9). 

The technique has been validated with available experimental data where possible, and excellent 
agreement is found (8, 14).  Grid resolution studies were also performed in the original studies to 
ensure grid-independent solutions (8, 9). 

3. Results 

In the current context, this computational procedure allows the general applicability of Sacks’ 
pitch-damping relations to be examined.  Arguably, up to now, it has not been possible to assess 
the validity or accuracy of these relationships due to the uncertainty associated with 
experimentally derived pitch-damping data and the lack of a higher order theory.  In the current 
research effort, the technique has been applied to two axisymmetric body geometries:  an ogive-
cylinder configuration and a cone-cylinder body with a flared afterbody.  The accuracy of Sacks’ 
relations is examined for each of these body geometries in supersonic flight. 

3.1 Ogive-Cylinder Results 

The computational approach was applied to a secant-ogive cylinder body (designated as the 
Army Navy Spinner Rocket [ANSR]) shown in figure 4.  Results for sea-level atmospheric 
conditions ( 5Re 4.53 10D M∞= × ) are shown as an example, although other Reynolds numbers 
and nose geometries were considered during the course of the study.  Baseline results are for a 
flight velocity of Mach 2.5 with additional results at Mach 1.8, 3.5, and 4.5.  The results 
presented here are representative of the other flight conditions and nose geometries examined. 

For the force coefficients, the deviation or “error” in the application of Sacks’ relations is defined 
in equation 19.  The deviation 1∆  represents the difference between the right-hand and left-hand 
sides of equation 4: 

 1qNmN CCC ∆≡−−=∆ αα . (19) 

Note that by simple algebraic manipulations, the following relations that are algebraically 
equivalent to equation 19 are found: 

 [ ] 2qNmNqN C2CCC ∆≡−−+=∆ αα , (20) 

and 

 [ ] 3NqNmN CCCC2 ∆≡+−−=∆ ααα . (21) 
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Figure 4.  Schematic of ANSR configuration. 

Essentially, these deviations are a measure of the accuracy of the Sacks’ relations shown in 
equations 4, 6, and 8.  It could be argued that the differences 1,∆  2 ,∆  and 3∆  are numerical 
errors that are not representative of physical phenomena.  However, it should be noted that the 
deviation ∆  can be computed independently in three different ways.  The deviation 1∆  is 
computed using the individual damping coefficients qNC  and αNC  obtained independently 
from two different types of helical motion, while  2∆  and 3∆  are computed from the pitch-
damping coefficient sum αNqN CC + and one of the two individual damping coefficients qNC  
and ,NC

α
 respectively.  The importance of having three independent methods for determining ∆  

is to demonstrate that the deviation is not due to an “error” in the prediction of any one of the 
three damping coefficients.  Similar expressions for the deviation of the moment coefficients ∆  
can also be obtained and are shown in equations 22–24: 

 1qmm2m CCC ∆≡−−=∆ αα , (22) 

 [ ] 2qmm2mqm C2CCC ∆≡−−+=∆ αα , (23) 

and 

 [ ] 3mqmm2m CCCC2 ∆≡+−−=∆ ααα . (24) 
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Figure 5 shows the computed deviation for the force coefficient as a function of body length at 
Mach 2.5.  Here, the body has been lengthened to 20 calibers to more clearly illustrate the 
variation of the deviation with body length. There is very good correlation between the three 
different methods of computing ∆ , suggesting that the deviation is representative of a physical 
effect rather than simply numerical error.  The deviation is very small over the nose and begins 
to grow in a linear fashion a couple of body diameters aft of the nose.  The deviation (for the 
force) can be shown to be independent of CG position using the CG translation relations for the 
individual force coefficients.  This was also confirmed by varying the CG position in the 
computations as well.  The computed deviation was also found to be somewhat dependent on 
nose length and Mach number, although the results shown are representative of the trends 
observed for the other flight conditions. 
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Figure 5.  Comparison of the three computed deviations 1∆ , 2∆ , and 3∆  vs. body 
length, ANSR, and Mach 2.5. 

Figure 6 shows the computed deviations for the force, 1,∆  2,∆  and 3,∆  compared with the 
individual pitch-damping coefficients and the pitch-damping sum.  Relative to αNC , and the 
pitch-damping force sum, the deviation is quite small.  The distribution of the deviation is also 
small compared with the pitch-damping force coefficient qNC , except near the end of the body 
where qNC  itself is nearly zero.  Equation 4 shows that according to Sacks’ relation, the 
difference between αNC  and qNC is the pitching moment coefficient .mC

α
  This is also 

graphically shown in figure 6.  Near the nose of the body, the difference between the two 
damping coefficients, αNC and qNC , increases at nearly the same rate as the pitching moment 
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Figure 6.  Comparison of the three computed deviations 1∆ , 2∆ , and 3∆  relative to the 
damping force coefficients, ANSR, Mach 2.5, = 0.5598cgx /L , and length-to-
diameter (L/D) ratio = 9. 

coefficient.  On the aft of the body, the pitching moment coefficient is nearly constant, and the 
difference between αNC and qNC becomes relatively constant. 

Figure 7 shows the computed deviation for the moment relative to the three damping coefficients 
of interest.  Again, there is very good correlation between the three methods for computing the 
deviation.  The computed deviation is small compared to individual damping moment 
coefficients and to the pitch-damping moment sum.  Sacks’ relation for the moment (equation 5) 
shows that the difference between αmC  and qmC  is the pitching second-moment coefficient 

αm2C .  This also can be seen in figure 7.  In a sense, figures 6 and 7 provide some measure of 
the expected error in applying Sacks’ relations to obtain the various damping moment 
coefficients given that normal force distribution (or αmC  and αm2C ) and one of the pitch-
damping coefficients is known. 

The most likely application of Sacks’ relations in practical situations is to compute the individual 
damping coefficients from the pitch-damping coefficient sum because the pitch-damping 
moment sum is much easier to measure.  Through simple algebraic manipulations of equations  
7 and 9, the following form of the Sacks’ relations can be obtained: 
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 [ ]( ) 2/CCCC m2mqmm ααα ++= , (25) 

and 

 [ ]( ) 2/CCCC m2mqmqm αα −+= . (26) 
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Figure 7.  Comparison of the three computed deviations 1∆ , 2∆ , and 3∆  relative to the 
damping moment coefficients, ANSR, Mach 2.5, = 0.5598cgx /L , and L/D = 9.  

Figure 8 shows a comparison of the pitch-damping moment coefficients mqC  and 
αmC  

obtained by applying the Sacks’ relationships using the pitch-damping moment coefficient sum    
m mq

 CC +⎡ ⎤⎣ ⎦α
and the second-moment coefficient of the normal force αm2C .  Here, CFD has 

been used to compute both m mq
 CC +⎡ ⎤⎣ ⎦α

 and αm2C .  The results from the application of these 

relations are compared with the CFD predictions of the individual damping coefficients.  The 
predictions were obtained at a flight velocity of Mach 2.5.  The coefficients qmC  and αmC  are 

overpredicted and underpredicted by ~5% and 12%, respectively, although the absolute error is 
similar for both coefficients.  The distribution of the damping coefficients over the body is also 
very well predicted. 
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Figure 8.  Comparison of the damping moment coefficients predicted from Sacks’ 
relations with CFD predictions, ANSR, Mach 2.5, = 0.5598cgx /L , and  
L/D = 9.  

Figures 9–11 show similar comparisons for flight velocities of Mach 1.8, 3.5, and 4.5.  The 
relative comparisons are very similar to the predictions at Mach 2.5 shown in figure 8.  The 
largest Mach number effect appears to occur on the cylindrical portion of the body rather than on 
the nose.  The relative Mach number effect, though relatively small, is captured in the application 
of the Sacks’ relations. 

Similar analysis can be performed for the force coefficients.  Figure 12 shows the comparison of 
the individual pitch-damping moment coefficients qNC  and αNC  predicted using the form of 

Sacks’ relations in equations 27 and 28 with direct CFD predictions.  The distribution of the 
force coefficients along the body is very well predicted using Sacks’ relations: 

 [ ]( ) 2/CCCC mNqNN ααα ++= , (27) 

and 

 [ ]( ) 2/CCCC mNqNqN αα −+= . (28) 
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Figure 9.  Comparison of the damping moment coefficients predicted from Sacks’ 
relations with CFD predictions, ANSR, Mach 1.8, = 0.5598cgx /L , and 
L/D 9.=  
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Figure 10.  Comparison of the damping moment coefficients predicted from Sacks’ 
relations with CFD predictions, ANSR, Mach 3.5, = 0.5598cgx /L , and 
L/D 9.=  
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Figure 11.  Comparison of the damping moment coefficients predicted from Sacks’ 
relations with CFD predictions, ANSR, Mach 4.5, = 0.5598cgx /L , and  
L/D = 9. 
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Figure 12.  Comparison of the damping force coefficient predicted from Sacks’ relations 
with CFD predictions, ANSR, Mach 2.5, = 0.5598cgx /L , and L/D 9.=
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Figure 13 shows the results for the individual pitch-damping coefficients for various CG 
positions for the body with the L/D ratio of 9 at Mach 2.5 obtained by applying equations 27 and 
28.  The results are compared with CFD results and with direct slender body theory results. 
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Figure 13.  Comparison of the predicted damping moment coefficients with CFD and 
slender body theory results, ANSR, Mach 2.5, and L/D 9.=  

There is very good correlation of the results obtained with Sacks’ relations and the CFD results, 
and the results are a significant improvement over the slender body theory. 

For the results shown in figures 8–12, comparisons have been made between the force and 
moment distributions along the body.  This was done because these distributions are easily 
extracted from the computational results, and they allow detailed examination of the 
performance of Sacks’ relations.  It must be emphasized that it is not necessary to obtain the 
pitch-damping force and moment distributions in order to apply Sacks’ relations because they are 
applicable for the global force and moment coefficients as well.  This is particularly important to 
consider when the source of the pitch-damping coefficient data is from experiment where only 
global coefficients are typically available.  However, Sacks’ relations do require the normal force 
distribution to determine αm2C  because generally only the normal force and pitching moment 
are available as global coefficients from many sources.  In lieu of more sophisticated 
computational methods for determining the normal force distribution, fast-design aeroprediction 
codes (3) should provide acceptable accuracy for a variety of flight vehicle geometries. 
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To demonstrate the use of Sacks’ relations when only global forces and moments are available, 
pitch-damping moment coefficient sum data from range firings of the ANSR have been used to 
estimate the individual pitch-damping moment coefficients using Sacks’ relations.  The normal 
force distribution from the fast-design aeroprediction code AP02 (3) has been used to predict 

αm2C .  Figure 14 shows the predicted pitch-damping coefficients obtained from Sacks’ relations 
using experimental measurements of the pitch-damping coefficient sum and αm2C  obtained 
from AP02.  The results are compared with direct CFD predictions of the individual damping 
coefficients as well as the results obtained from Sacks’ relation using CFD predictions of the 
pitch-damping coefficient sum and αm2C shown previously in figure 10.  The experimentally 
derived values of the individual pitch-damping coefficients compare well with the predicted 
results.  The results also indicate that the biggest source of error is produced by the uncertainty in 
the experimentally derived pitch-damping moment coefficient rather than the error in Sacks’ 
relations.  (The pitch-damping data used here are from a highly regarded data set and are 
representative of the expected accuracy for the pitch-damping coefficient sum from range 
firings.) 
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Figure 14.  Comparison of the damping moment coefficients derived from experimental 
data or CFD using Sacks’ relations with direct CFD prediction, ANSR, Mach 
2.5, and L/D 9.=  

Both Sacks (1) and Bryson (2) obtained relations between the pitch-damping coefficients and the 
normal force coefficient shown previously in equations 1 and 2.  Relatively speaking, equations 
1 and 2 do not perform particularly well, especially when compared to Sacks’ relations 
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(equations 4–9).  Figure 15 shows a comparison of the CFD prediction of the pitch-damping 
coefficient qNC  with results obtained using equation 2 and Sacks’ relation (equation 28).  As 
before, CFD results were used to obtain the aerodynamic coefficients required in equations 2 and 
28.  The results obtained with equation 2 provide only a qualitative prediction of the distribution 
of  qNC compared with the result obtained using Sacks’ relation (equation 28), which is in much 
better agreement with the CFD predictions.  Instead of relating the pitch-damping coefficients to 
the normal force coefficient as in equation 2, Sacks’ relations relate the pitch-damping 
coefficient to each other.  These results seem to imply the pitch-damping coefficients are more 
closely related to each other than they are to the normal force coefficient.  Figure 16 shows a 
comparison of the pitch-damping moment coefficient sum αmqm CC + from direct CFD 
prediction with the results obtained using Bryson’s relation (equation 1), which like equation 2, 
relates the damping coefficient to the normal force coefficient.  The distribution of αmqm CC +  
is relatively poorly predicted compared with the CFD result, although total moment for entire 
configuration differs by only 25%. 
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Figure 15.  Comparison of the pitch-damping force coefficient 
qNC  obtained from 

direction CFD predictions, predictions using Sacks’ relation (equation 28) 
and equation 2, ANSR, Mach 2.5, = 0.5598cgx /L , and L/D 9.=  

3.2 Flared Projectile Results 

The performance of Sacks’ relations was also examined for a flared projectile geometry shown in 
figure 17.  Predictions of the pitch-damping coefficient sum have been validated previously for  
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Figure 16.  Comparison of the pitch-damping moment coefficient sum predicted from 
Bryson’s relation (equation 1) with CFD predictions, ANSR, Mach 2.5, 

= 0.5598cgx /L , and L/D 9.=  

 

 

Figure 17.  Schematic of the flared projectile geometry. 

this configuration (14).  For the current report, additional predictions of the individual pitch-
damping coefficients were also performed for flight velocities between Mach 2 and Mach 5. 
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Figure 18 shows the predicted deviations of the moment compared with the individual pitch-
damping coefficients at Mach 2.  Again, the deviation over the body is small compared to the 
pitch-damping coefficients even on the afterbody where both the geometry and moment 
coefficients are changing significantly.  Similar results were found at the other flight velocities.   
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Figure 18.  Comparison of the three computed deviations, 1∆ , 2∆ , and 3∆  relative to 
the damping moment coefficients, flared projectile, and Mach 2. 

Similar to the results for the secant ogive/cylinder configuration, the form of Sacks’ relations 
embodied in equations 25 and 26 was applied to determine the individual pitch-damping 
coefficients from the pitch-damping moment coefficient sum and the pitching second-moment 
coefficient for the flared projectile geometry.  Comparisons were made with direct CFD 
predictions. 

Figures 19 and 20 show comparisons of the individual pitch-damping moment coefficients at 
Mach 2 and 5, respectively, for the flare projectile geometry.  Very good agreement between the 
results obtained by applying Sacks’ relations and direct CFD predictions are found.  Additional 
results for the same flare projectile with the 6° flare replaced by a 15° flare were also obtained 
and are shown in figure 21.  Despite a nearly doubling of the pitch-damping coefficient due to 
the larger flare, the Sacks’ relations results are in very good agreement with the direct CFD 
predictions.
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Figure 19.  Comparison of the damping moment coefficient predicted from Sacks’ 
relations with CFD predictions, flared projectile, and Mach 2. 
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Figure 20.  Comparison of the damping moment coefficient predicted from Sacks’ 
relations with CFD predictions, flared projectile, and Mach 5.
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Figure 21.  Comparison of the damping moment coefficient predicted from Sacks’ 
relations with CFD predictions, 15° flared projectile, and Mach 5. 

 

4. Summary 

In conclusion, the results presented here indicate that Sacks’ pitch-damping relations are only 
strictly valid under the context of the theory from which they were originally developed.  They 
do, however, provide a reasonably good means of estimating the pitch-damping coefficients 
when one of the three pitch-damping coefficients can be determined.  The most likely practical 
use of these relations might be to provide estimates of the individual pitch-damping coefficients  
using values of the pitch-damping coefficient sum determined from some other source, such as 
experimental data and engineering estimation approaches or when the additional expense of the 
separate CFD computations of the individual pitch-damping coefficients is not justified.  In some 
cases, it appears that the error in applying these relationships is smaller than the error associated 
with generating the initial pitch-damping coefficient (such as with engineering estimation 
approaches) from which the other two damping coefficients are derived using Sacks’ relations. 

Applying Sacks’ relations to determine the individual pitch-damping coefficients from the pitch-
damping sum represents only one possible application of Sacks’ relations.  These relations could 
also benefit theoretical developments because theories for predicting the pitch-damping 
coefficients need only focus on a single damping coefficient.  The other damping coefficients 
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could then be obtained from Sacks’ relations.  Such an approach has been already used as an 
estimation procedure for the damping coefficients (6).  In this work, the distribution of 

αNC along the body is predicted using slender body theory with empirically based corrections.  
The damping coefficient qNC can then be obtained from Sacks’ relations.  Once the damping 
force distributions are known, the damping moments can be easily obtained by integration of the 
force loadings.  Improvements in the estimates of qNC  from Sacks’ relations can also be 
obtained by correlating the error ∆  as well – an approach used in reference (6) to further 
improve the estimates of qNC . 

Finally, in the currently report, only axisymmetric configurations in supersonic flight have been 
considered.  The theory from which Sacks derived the relations considered here is applicable to 
both wingless and winged vehicles.  Further research is still required to assess the performance 
of Sacks’ relations for winged vehicles and for other flight velocity regimes. 

 



 25

5. References 

1. Sacks, A. H.  Aerodynamic Forces, Moments, and Stability Derivatives for Slender Bodies of 
General Cross Section; NACA Technical Note 3283; National Advisory Committee for 
Aeronautics:  Washington, DC, November 1954; p 27. 

2. Bryson, A. E., Jr.  Stability Derivatives for a Slender Missile With Application to a Wing-
Body-Vertical-Tail Configuration.  Journal of the Aeronautical Sciences May 1953, 20 (5), 
297–308. 

3. Moore, F. G.; Hymer, T. C.  The 2002 Version of the Aeroprediction Code:  Part I – 
Summary of New Theoretical Methodology; NSWCDD/TR-01/108; Naval Surface Warfare 
Center:  Dahlgren, VA, March 2002. 

4. Vukelich, S. R.; Jenkins, J. E.  Missile DATCOM:  Aerodynamic Prediction on Conventional 
Missiles Using Component Build-up Techniques; AIAA Paper 84-0388; American Institute 
of Aeronautics and Astronautics:  Reston, VA, January 1984. 

5. Whyte, R. E.  Spinner – A Computer Program for Predicting the Aerodynamic Coefficients 
of Spin Stabilized Projectiles; Class 2 Report No. 69APB3; General Electric Company:  
Burlington, VA, August 1969. 

6. Danberg, J. E.; Weinacht, P.  Approximate Computation of Pitch-Damping Coefficients; 
AIAA Paper 2002-5048; American Institute of Aeronautics and Astronautics:  Reston, VA, 
August 2002. 

7. Sigal, A.  Correlation of the Damping in Pitch Stability Derivatives for Body-Tail 
Configurations; AIAA Paper 94-3482; American Institute of Aeronautics and Astronautics:  
Reston, VA, August 2002. 

8. Weinacht, P.; Sturek, W. B.; Schiff, L. B.  Navier-Stokes Predictions of Pitch-Damping for 
Axisymmetric Projectiles.  Journal of Spacecraft and Rockets 1997, 34 (6), 753–761. 

9. Weinacht, P.  Navier-Stokes Predictions of the Individual Components of the Pitch-Damping 
Sum.  Journal of Spacecraft and Rockets 1998, 35 (5), 598–605. 

10. Park, S. H.; Kim, Y.; Kwon, J. H.  Prediction of Damping Coefficients Using the Unsteady 
Euler Equations.  Journal of Spacecraft and Rockets 2003, 40 (3), 356–362. 

11. Schiff, L. B.; Steger, J. L.  Numerical Simulation of Steady Supersonic Viscous Flow.  AIAA 
Journal 1980, 18 (12), 1421–1430. 



 26

12. Baldwin, B. S.; Lomax, H.  Thin Layer Approximation and Algebraic Model for Separated 
Turbulent Flows; AIAA Paper 78-257; American Institute of Aeronautics and Astronautics: 
Reston, VA, January 1978. 

13. Beam, R.; Warming, R. F.  An Implicit Factored Scheme for the Compressible Navier-
Stokes Equations.  AIAA Journal 1978, 16 (4), 85–129. 

14. Weinacht, P.  Navier-Stokes Predictions of Pitch-Damping for a Family of Flared 
Projectiles; AIAA Paper 91-3339; American Institute of Aeronautics and Astronautics: 
Reston, VA, September 1991. 



 27

List of Symbols, Abbreviations, and Acronyms 

a   Speed of sound 

mC   Pitching moment coefficient, 
DSV

2
1

M

ref
2

∞ρ
 

αmC   Pitching moment coefficient slope with respect to angle of attack, 
α∂

∂ mC  

αm2C   Pitching second moment coefficient slope with respect to angle of attack, 
α∂

∂ m2C  

αmC    Pitch-damping moment coefficient slope, 
⎟
⎠
⎞

⎜
⎝
⎛∂

∂

V
D

Cm

α
 

qmC   Pitch-damping moment coefficient slope, 
⎟
⎠
⎞

⎜
⎝
⎛∂

∂

V
Dq

Cm  

αmqm CC +  Pitch-damping moment coefficient  

nC   Side moment coefficient 

NC   Normal force coefficient,  
ref

2SV
2
1

F

∞ρ
 

αNC   Normal force coefficient slope with respect to angle of attack, 
α∂

∂ NC
 

αNC    Pitch-damping force coefficient slope, 
⎟
⎠
⎞

⎜
⎝
⎛∂

∂

V
D

CN

α
 

qNC   Pitch-damping force slope, 
⎟
⎠
⎞

⎜
⎝
⎛∂

∂

V
Dq

CN  

αNqN CC +  Pitch-damping force coefficient 
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D   Reference diameter 

e   Total energy per unit volume 

Ĝ,F̂,Ê  Flux vectors in transformed coordinates 

F   Force  

Ĥ   Source term in Navier-Stokes equations due to rotating coordinate frame  

cĤ   Source term in Navier-Stokes equations due to cylindrical coordinate formulation 

L   Body length 

M   Mach number 

M   Moment 

p   Pressure 

q   Transverse angular rate of body as used in flight mechanics equations 

Tq   Transposed vector of dependent variables as used in Navier-Stokes equations 

r   Radial coordinate 

Re   Reynolds number, ∞∞∞ µρ /Da  

oR   Helix radius 

refS   Reference area, 
4
DS

2

ref
π

=  

Ŝ   Viscous flux vector 

cŜ   Viscous terms due to cylindrical coordinate formulation 

w,v,u   Velocity components in the r,,x φ  directions 

W,V,U  Contravariant velocity components 

V  Freestream velocity 

eee Z,Y,X  Earth-fixed coordinates 

x   Axial location along body from nose 

x   Integration variable associated with axial location along body from nose 

cgx   Axial location of center of gravity from nose 
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Greek Symbols 

α   Angle of attack  

α   Angular rate associated with angle of attack 

β   Yaw angle 

γ   Cosine of total angle of attack 

δ   Sine of total angle of attack 

∆   Deviation or error in Sacks’ relations for force 

∆   Deviation or error in Sacks’ relations for moment 

µ   Viscosity 

ζηξ ,,   Transformed coordinates in the Navier-Stokes equations 

ρ   Density 

φ   Circumferential coordinate 

ω   Angular velocity about longitudinal axis 

Ω   Angular rate associated with coning and helical motions 

 

Subscripts 

∞   Quantity evaluated at freestream conditions 
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  PO BOX 5500 
  HUNTSVILLE AL 35814-5500 

ABERDEEN PROVING GROUND 
 
 24 DIR USARL 
  AMSRD ARL WM B 
   A HORST 
  AMSRD ARL WM BA 
   D LYON 
  AMSRD ARL WM BC 
   M BUNDY 
   G COOPER 
   J DESPIRITO 
   J GARNER  
   B GUIDOS 
   K HEAVEY 
   J NEWILL 
   P PLOSTINS 
   J SAHU 
   S SILTON 
   D WEBB 
   P WEINACHT (8 CPS) 
   A ZIELINSKI 
  AMSRD ARL WM BD 
   B FORCH 
  AMSRD ARL WM BF 
   S WILKERSON 
 
 



 
 
NO. OF   
COPIES ORGANIZATION  
 

 32

 1 TECHNION ISRAEL INST OF TECH 
  A SIGAL 
  TECHNION CITY 
  HAIFA 32000 
  ISRAEL 
 


